

Propositional Logic

Question: How do we formalize the definitions and reasoning we use in our proofs?

Where We're Going

- ***Propositional Logic*** (Today)
 - Reasoning about Boolean values.
- ***First-Order Logic*** (Wednesday/Friday)
 - Reasoning about properties of multiple objects.

Propositional Logic

A **proposition** is a statement that is either true or false.

In other words, English sentences can be propositions, but not all are (for example, commands and questions can't be propositions).

Propositional Logic

- ***Propositional logic*** is a mathematical system for reasoning about propositions and how they relate to one another.
- Every statement in propositional logic consists of ***propositional variables*** combined via ***propositional connectives***.
 - Each variable represents some proposition, such as “You liked it” or “You should have put a ring on it.”
 - Connectives encode how propositions are related, such as “If you liked it, then you should have put a ring on it.”

Propositional Logic as a Boolean Algebra

- In elementary school arithmetic, we learn that two expressions are equivalent, *for specific numbers*:

$$(9 + 5) / 7 = (1/7)(9 + 5)$$

$$(14)/7 = (1/7)(14)$$

$$2 = 2$$

- In high school, we learn algebra, which lets us study the **structural patterns** of equivalence, *regardless of the specific numbers involved*:

$$(a + b) / c = (1/c)(a + b)$$

- Algebra replaces the numbers with variables so we can focus on analyzing and manipulating the structure.

Propositional Logic as a Boolean Algebra

- Philosophers, mathematicians, and logicians wanted to do the same thing that algebra does for arithmetic, but for the analysis of the structure of arguments not analysis of the structure of numeric calculations.
- We replace individual English sentences that state facts with propositional variables, and replace the “if...then,” “and,” “or,” etc. with operator symbols.
- So we can focus on analyzing and manipulating the structure.

Propositional Variables

- Each proposition will be represented by a ***propositional variable***.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s , etc.
- Each variable can take one one of two values: true or false.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- First, there's the logical “NOT” operation:

$\neg p$

- You'd read this out loud as “not p .”
- The fancy name for this operation is ***logical negation***.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Next, there's the logical “AND” operation:

$p \wedge q$

- You'd read this out loud as “ p and q .”
- The fancy name for this operation is ***logical conjunction***.

Propositional Connectives

- There are seven propositional connectives, many of which will be familiar from programming.
- Then, there's the logical “OR” operation:

$p \vee q$

- You'd read this out loud as “ p or q .”
- The fancy name for this operation is ***logical disjunction***. This is an *inclusive* or.

Truth Tables

- A ***truth table*** is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Let's go look at the truth tables for the three connectives we've seen so far:

¬

∧

∨

Quick check: how many rows of the truth table output are true for **∨**?

Go to
PollEv.com/cs103spr25

Summary of Important Points

- The \vee connective is an *inclusive* “or.” It's true if at least one of the operands is true.
 - Similar to the **||** operator in C, C++, Java, etc. and the **or** operator in Python.
- If we need an exclusive “or” operator, we can build it out of what we already have.
 - Try this yourself! Take a minute to combine these operators together to form an expression that represents the exclusive or of p and q (something that's true if and only if exactly one of p and q are true.)

Summary of Important Points

- The \vee connective is an *inclusive* “or.” It’s true if at least one of the inputs is true.
 - Similar to the || and the **or** operator.
- If we need an exclusive “or” operator, we can build it out of what we already have.
 - Try this yourself! Take a minute to combine these operators together to form an expression that represents the exclusive or of p and q (something that’s true if and only if exactly one of p and q are true.)

Quick check: how many rows of the truth table output should be true for **exclusive-or**?

Go to PollEv.com/cs103spr25

Mathematical Implication

Implication

- We can represent implications using this connective:

$p \rightarrow q$

- You'd read this out loud as “ p implies q ” or “if p then q .”
- **Question:** What should the truth table for $p \rightarrow q$ look like?
- Pull out a sheet of paper, make a guess, and talk things over with your neighbors!

Quick check: how many rows of the truth table output should be true for \rightarrow ?

Go to PollEv.com/cs103spr25

Implication

Dr. Lee: “If you pick a perfect March Madness bracket this year, then I’ll give you an A+ in CS103.”

What if...

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	
F	T	
T	F	
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	
F	T	
T	F	
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	T
F	T	
T	F	
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	T
F	T	
T	F	
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	

Implication

- ...you pick a bad bracket and get a C?
- ...you pick a bad bracket and get an A+?
- ...you pick a **perfect** bracket and get a C?
- ...you pick a **perfect** bracket and get an A+?

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T		T

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

An implication is false only when the antecedent is true and the consequent is false.

Every formula is either true or false, so these other entries have to be true.

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

Important observation:

The statement $p \rightarrow q$ is true whenever $p \wedge \neg q$ is false.

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

An implication with a false antecedent is called ***vacuously true***.

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

Please commit this table to memory. We're going to need it, extensively, over the next couple of weeks.

The Biconditional Connective

The Biconditional Connective

- On Friday, we saw that “ p if and only if q ” means both that $p \rightarrow q$ and $q \rightarrow p$.
- We can write this in propositional logic using the **biconditional** connective:

$$p \leftrightarrow q$$

- This connective’s truth table has the same meaning as “ p implies q and q implies p .”
- Based on that, what should its truth table look like?
- Take a guess, and talk it over with your neighbor!

Biconditionals

- The ***biconditional*** connective $p \leftrightarrow q$ is read “ p if and only if q .”
- Here's its truth table:

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

Biconditionals

- The ***biconditional*** connective $p \leftrightarrow q$ is read “ p if and only if q .”
- Here's its truth table:

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

One interpretation of \leftrightarrow is to think of it as equality: the two propositions must have equal truth values.

True and False

- There are two more logic symbols to learn: true and false.
 - The symbol \top is a value that is always true.
 - The symbol \perp is value that is always false.

Fun Fact: Logic of the Proof by Contradiction

- Suppose you want to prove p is true using a proof by contradiction.
- The setup looks like this:
 - Assume p is false.
 - Derive something that we know is false.
 - Conclude that p is true.
- In propositional logic:

$$(\neg p \rightarrow \perp) \rightarrow p$$

Operator Precedence

- How do we parse this statement?

$$\neg x \rightarrow y \vee z \rightarrow x \vee y \wedge z$$

- Operator precedence for propositional logic:

¬
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$\neg x \rightarrow y \vee z \rightarrow x \vee y \wedge z$$

- Operator precedence for propositional logic:

—
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow y \vee z \rightarrow x \vee y \wedge z$$

- Operator precedence for propositional logic:

—
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow y \vee z \rightarrow x \vee y \wedge z$$

- Operator precedence for propositional logic:

¬
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow y \vee z \rightarrow x \vee (y \wedge z)$$

- Operator precedence for propositional logic:

¬
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow y \vee z \rightarrow x \vee (y \wedge z)$$

- Operator precedence for propositional logic:

¬
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow (y \vee z) \rightarrow (x \vee (y \wedge z))$$

- Operator precedence for propositional logic:

¬
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow (y \vee z) \rightarrow (x \vee (y \wedge z))$$

- Operator precedence for propositional logic:

¬
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow ((y \vee z) \rightarrow (x \vee (y \wedge z)))$$

- Operator precedence for propositional logic:

¬
Λ
∨
→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$(\neg x) \rightarrow ((y \vee z) \rightarrow (x \vee (y \wedge z)))$$

- Operator precedence for propositional logic:

\neg

\wedge

\vee

\rightarrow

\leftrightarrow

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- The main points to remember:
 - \neg binds to whatever immediately follows it.
 - \wedge and \vee bind more tightly than \rightarrow .
 - We will commonly write expressions like $p \wedge q \rightarrow r$ without adding parentheses.
- *For more complex expressions, let's agree to use parentheses!*

The Big Table

Connective	Read Aloud As	C++ Version	Fancy Name
\neg	“not”	!	Negation
\wedge	“and”	<code>&&</code>	Conjunction
\vee	“or”	<code> </code>	Disjunction
\rightarrow	“implies” or “if...then”	<i>see PS2!</i>	Implication
\leftrightarrow	“if and only if”	<i>see PS2!</i>	Biconditional
\top	“true”	true	Truth
\perp	“false”	false	Falsity

Recap So Far

- A ***propositional variable*** is a variable that is either true or false.
- The ***propositional connectives*** are
 - Negation: $\neg p$
 - Conjunction: $p \wedge q$
 - Disjunction: $p \vee q$
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$
 - True: \top
 - False: \perp

Translating into Propositional Logic

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

Some Sample Propositions

- a*: I will be in the path of totality.
- b*: I will see a total solar eclipse.

Quick check: How would you write this in propositional logic? “I won't see a total solar eclipse if I'm not in the path of totality.”

Go to PollEv.com/cs103spr25

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

“I won't see a total solar eclipse
if I'm not in the path of totality.”

$$\neg a \rightarrow \neg b$$

“*p* if *q*”

translates to

q → *p*

It does *not* translate to

p → *q*

Some Sample Propositions

- a*: I will be in the path of totality.
- b*: I will see a total solar eclipse.
- c*: There is a total solar eclipse today.

Some Sample Propositions

- a*: I will be in the path of totality.
- b*: I will see a total solar eclipse.
- c*: There is a total solar eclipse today.

“If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse.”

Some Sample Propositions

- a : I will be in the path of totality.
- b : I will see a total solar eclipse.
- c : There is a total solar eclipse today.

“If I will be in the path of totality, but there's no solar eclipse today, I won't see a total solar eclipse.”

$$(a \wedge \neg c) \rightarrow \neg b$$

“*p*, but *q*”

translates to

p \wedge *q*

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
 - In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositional phrases lead to counterintuitive translations; make sure to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince you that the statement $p \wedge q$ is false?

Quick Question:

What would I have to show you to convince you that the statement $p \vee q$ is false?

p = “there is chocolate under Cup 1”
 q = “there is a chocolate under Cup 2”

Quick check:

- (a) Lift Cup 1 and see candy
- (b) Lift Cup 2 and see candy
- (c) both (a) and (b)
- (d) Lift Cup 1 and see empty
- (e) Lift Cup 2 and see empty
- (f) both (d) and (e)
- (dg) something else

Go to PollEv.com/cs103spr25

DeMorgan's Laws

- Using truth tables, we concluded that

$$\neg(p \wedge q)$$

is equivalent to

$$\neg p \vee \neg q$$

- We also saw that

$$\neg(p \vee q)$$

is equivalent to

$$\neg p \wedge \neg q$$

- These two equivalences are called **De Morgan's Laws**.

DeMorgan's Laws in Code

- **Pro tip:** Don't write this:

```
if ( !(p() && q()) ) {  
    /* ... */  
}
```

- Write this instead:

```
if ( !p() || !q() ) {  
    /* ... */  
}
```

- (This even short-circuits correctly!)

An Important Equivalence

- Earlier, we talked about the truth table for $p \rightarrow q$. We chose it so that

$$p \rightarrow q \quad \text{is equivalent to} \quad \neg(p \wedge \neg q)$$

- Later on, this equivalence will be incredibly useful:

$$\neg(p \rightarrow q) \quad \text{is equivalent to} \quad p \wedge \neg q$$

Another Important Equivalence

- Here's a useful equivalence. Start with

$$p \rightarrow q \quad \text{is equivalent to} \quad \neg(p \wedge \neg q)$$

- By DeMorgan's laws:

$$p \rightarrow q \quad \text{is equivalent to} \quad \neg(p \wedge \neg q)$$

$$\text{is equivalent to} \quad \neg p \vee \neg \neg q$$

$$\text{is equivalent to} \quad \neg p \vee q$$

- Thus $p \rightarrow q$ is equivalent to $\neg p \vee q$

Another Important Equivalence

- Here's a useful equivalence. Start with

$$p \rightarrow q \quad \text{is equivalent to} \quad \neg(p \wedge \neg q)$$

- By de Morgan's laws:

$$p \rightarrow q \quad \text{is equivalent}$$

$$\text{is equivalent}$$

$$\text{is equivalent}$$

If p is false, then $\neg p \vee q$ is true. If p is true, then q has to be true for the whole expression to be true.

- Thus $p \rightarrow q$ is equivalent to $\neg p \vee q$

Next Time

- *First-Order Logic*
 - Reasoning about groups of objects.
- *First-Order Translations*
 - Expressing yourself in symbolic math!