

Propositional Logic

Question: How do we formalize the
definitions and reasoning we use in our

proofs?

Where We're Going

● Propositional Logic (Today)
● Reasoning about Boolean values.

● First-Order Logic (Wednesday/Friday)
● Reasoning about properties of multiple

objects.

Propositional Logic

A proposition is a statement that is either
true or false.

In other words, English sentences can be propositions,
but not all are (for example, commands and questions

can’t be propositions).

Propositional Logic

● Propositional logic is a mathematical system
for reasoning about propositions and how they
relate to one another.

● Every statement in propositional logic consists
of propositional variables combined via
propositional connectives.
● Each variable represents some proposition, such as

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related,

such as “If you liked it, then you should have put a
ring on it.”

Propositional Logic as a
Boolean Algebra

● In elementary school arithmetic, we learn that two
expressions are equivalent, for specific numbers:

(9 + 5) / 7 = (1/7)(9 + 5)

 (14)/7 = (1/7)(14)

2 = 2
● In high school, we learn algebra, which lets us study

the structural patterns of equivalence, regardless of
the specific numbers involved:

(a + b) / c = (1/c)(a + b)
● Algebra replaces the numbers with variables so we can

focus on analyzing and manipulating the structure.

Propositional Logic as a
Boolean Algebra

● Philosophers, mathematicians, and logicians
wanted to do the same thing that algebra
does for arithmetic, but for the analysis of the
structure of arguments not analysis of the
structure of numeric calculations.

● We replace individual English sentences that
state facts with propositional variables, and
replace the “if...then,” “and,” “or,” etc. with
operator symbols.

● So we can focus on analyzing and
manipulating the structure.

Propositional Variables

● Each proposition will be represented by a
propositional variable.

● Propositional variables are usually
represented as lower-case letters, such
as p, q, r, s, etc.

● Each variable can take one one of two
values: true or false.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● First, there’s the logical “NOT” operation:

¬p
● You’d read this out loud as “not p.”
● The fancy name for this operation is logical

negation.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● Next, there’s the logical “AND” operation:

p ∧ q
● You’d read this out loud as “p and q.”
● The fancy name for this operation is logical

conjunction.

Propositional Connectives

● There are seven propositional connectives,
many of which will be familiar from
programming.

● Then, there’s the logical “OR” operation:

p ∨ q
● You’d read this out loud as “p or q.”
● The fancy name for this operation is logical

disjunction. This is an inclusive or.

Truth Tables

● A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

● Let’s go look at the truth tables for the
three connectives we’ve seen so far:

¬ ∧ ∨

Quick check: how many
rows of the truth table
output are true for ∨?

Go to
PollEv.com/cs103spr25

Quick check: how many
rows of the truth table
output are true for ∨?

Go to
PollEv.com/cs103spr25

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's
true if at least one of the operands is true.
● Similar to the || operator in C, C++, Java, etc.

and the or operator in Python.

● If we need an exclusive “or” operator, we
can build it out of what we already have.
● Try this yourself! Take a minute to combine

these operators together to form an expression
that represents the exclusive or of p and q
(something that’s true if and only if exactly one
of p and q are true.)

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's
true if at least one of the operands is true.
● Similar to the || operator in C, C++, Java, etc.

and the or operator in Python.

● If we need an exclusive “or” operator, we
can build it out of what we already have.
● Try this yourself! Take a minute to combine

these operators together to form an expression
that represents the exclusive or of p and q
(something that’s true if and only if exactly one
of p and q are true.)

Quick check: how many rows of
the truth table output should be

true for exclusive-or?
Go to PollEv.com/cs103spr25

Quick check: how many rows of
the truth table output should be

true for exclusive-or?
Go to PollEv.com/cs103spr25

Mathematical Implication

Implication

● We can represent implications using this
connective:

p → q
● You’d read this out loud as “p implies q” or “if p

then q.”
● Question: What should the truth table for p → q

look like?
● Pull out a sheet of paper, make a guess, and talk

things over with your neighbors!

Quick check: how many rows of
the truth table output should be

true for →?
Go to PollEv.com/cs103spr25

Quick check: how many rows of
the truth table output should be

true for →?
Go to PollEv.com/cs103spr25

Dr. Lee: “If you pick a perfect March
Madness bracket this year, then I’ll give

you an A+ in CS103.”

 What if…
● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

T

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

T

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

T
T

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

T
T

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

T
T
F

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

T
T
F

● ...you pick a bad bracket and get a C?
● ...you pick a bad bracket and get an A+?
● ...you pick a perfect bracket and get a C?
● ...you pick a perfect bracket and get an A+?

Implication

p q p → q

T T

F F
F T
T F

T
T
F
T

p q p → q

T T T

TF F
TF T
FT F

p q p → q

T T T

TF F
TF T
FT F

An implication is false only
when the antecedent is true
and the consequent is false.

An implication is false only
when the antecedent is true
and the consequent is false.

Every formula is either true
or false, so these other
entries have to be true.

Every formula is either true
or false, so these other
entries have to be true.

p q p → q

T T T

TF F
TF T
FT F

Important observation:
The statement p → q is true
whenever p ∧ ¬q is false.

Important observation:
The statement p → q is true
whenever p ∧ ¬q is false.

p q p → q

T T T

TF F
TF T
FT F

An implication with a
false antecedent is

called vacuously true.

An implication with a
false antecedent is

called vacuously true.

p q p → q

T T T

TF F
TF T
FT F

Please commit this table
to memory. We’re going to

need it, extensively, over
the next couple of weeks.

Please commit this table
to memory. We’re going to

need it, extensively, over
the next couple of weeks.

The Biconditional Connective

The Biconditional Connective

● On Friday, we saw that “p if and only if q” means
both that p → q and q → p.

● We can write this in propositional logic using the
biconditional connective:

p ↔ q
● This connective’s truth table has the same

meaning as “p implies q and q implies p.”
● Based on that, what should its truth table look

like?
● Take a guess, and talk it over with your neighbor!

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔ is to
think of it as equality: the

two propositions must have
equal truth values.

One interpretation of ↔ is to
think of it as equality: the

two propositions must have
equal truth values.

True and False

● There are two more logic symbols to
learn: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

Fun Fact: Logic of the Proof by
Contradiction

● Suppose you want to prove p is true using a
proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.
● We will commonly write expressions like

p ∧ q → r without adding parentheses.
● For more complex expressions, let’s

agree to use parentheses!

The Big Table

Connective Read Aloud As C++ Version Fancy Name

¬

∧

∨

→

↔

⊤

⊥

“not”

“and”

“or”

“implies” or
“if...then”

“if and only if”

“true”

“false”

!

&&

||

see PS2!

see PS2!

true

false

Negation

Conjunction

Disjunction

Implication

Biconditional

Truth

Falsity

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Translating into Propositional Logic

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

Quick check: How would you
write this in propositional

logic? “I won't see a total solar
eclipse if I'm not in the path of

totality.”
Go to PollEv.com/cs103spr25

Quick check: How would you
write this in propositional

logic? “I won't see a total solar
eclipse if I'm not in the path of

totality.”
Go to PollEv.com/cs103spr25

Some Sample Propositions

“I won't see a total solar eclipse
if I'm not in the path of totality.”

“I won't see a total solar eclipse
if I'm not in the path of totality.”

¬a → ¬b

a: I will be in the path of totality.

b: I will see a total solar eclipse.

“p if q”

translates to

q → p

It does not translate to

 ⚠ p → q ⚠

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of
totality, but there's no solar

eclipse today, I won't see a total
solar eclipse.”

“If I will be in the path of
totality, but there's no solar

eclipse today, I won't see a total
solar eclipse.”

Some Sample Propositions

a: I will be in the path of totality.

b: I will see a total solar eclipse.

c: There is a total solar eclipse today.

“If I will be in the path of
totality, but there's no solar

eclipse today, I won't see a total
solar eclipse.”

“If I will be in the path of
totality, but there's no solar

eclipse today, I won't see a total
solar eclipse.”

(a ∧ ¬c) → ¬b

“p, but q”

translates to

p ∧ q

The Takeaway Point

● When translating into or out of
propositional logic, be very careful not to
get tripped up by nuances of the English
language.
● In fact, this is one of the reasons we have a

symbolic notation in the first place!
● Many prepositional phrases lead to

counterintuitive translations; make sure
to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question:

What would I have to show you to convince
you that the statement p ∨ q is false?
p = “there is chocolate under Cup 1”

q = “there is a chocolate under Cup 2”

Quick check:
(a) Lift Cup 1 and see candy
(b) Lift Cup 2 and see candy
(c) both (a) and (b)
(d) Lift Cup 1 and see empty
(e) Lift Cup 2 and see empty
(f) both (d) and (e)
(dg) something else

Go to PollEv.com/cs103spr25

Quick check:
(a) Lift Cup 1 and see candy
(b) Lift Cup 2 and see candy
(c) both (a) and (b)
(d) Lift Cup 1 and see empty
(e) Lift Cup 2 and see empty
(f) both (d) and (e)
(dg) something else

Go to PollEv.com/cs103spr25

DeMorgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q
● These two equivalences are called De Morgan's

Laws.

DeMorgan's Laws in Code

● Pro tip: Don't write this:

 if (!(p() && q())) {

 /* … */

 }

● Write this instead:

 if (!p() || !q()) {

 /* … */

 }

● (This even short-circuits correctly!)

An Important Equivalence

● Earlier, we talked about the truth table
for p → q. We chose it so that

 p → q is equivalent to ¬(p ∧ ¬q)
● Later on, this equivalence will be

incredibly useful:

¬(p → q) is equivalent to p ∧ ¬q

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q is equivalent to ¬(p ∧ ¬q)
● By DeMorgan's laws:

 p → q is equivalent to ¬(p ∧ ¬q)

 p → q is equivalent to ¬p ∨ ¬¬q

 p → q is equivalent to ¬p ∨ q
● Thus p → q is equivalent to ¬p ∨ q

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q is equivalent to ¬(p ∧ ¬q)
● By de Morgan's laws:

 p → q is equivalent to ¬(p ∧ ¬q)

 p → q is equivalent to ¬p ∨ ¬¬q

 p → q is equivalent to ¬p ∨ q
● Thus p → q is equivalent to ¬p ∨ q

If p is false, then ¬p q∨ is
true. If p is true, then q has

to be true for the whole
expression to be true.

If p is false, then ¬p q∨ is
true. If p is true, then q has

to be true for the whole
expression to be true.

Next Time

● First-Order Logic
● Reasoning about groups of objects.

● First-Order Translations
● Expressing yourself in symbolic math!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

